

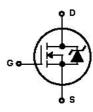
These are N-Channel enhansement mode silicon gate power field effect transistors. They are advance power MOSFETs designed, tested, and guaranteed to withstancd a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17422.

Ordering Information

Packaging

PART NUMBER	PACKAGE	BRAND
IRF640	TO-220AB	IRF640
RF1S640	TO-262AA	RF1S640
RF1S640SM	TO-263AB	RF1S640


NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., RF1S640SM9A.

Features

- 18A, 200V
- r_{DS(ON)}=0.180 Ω
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speed
- Linear Transfer Characteristics
- High Input Impedance
- Related Literature

-TB334 "Guidelines for Soldering Surface Mount Components PC Boards"

Symbol

TO-220AB TO-263AB TO-262AA SOURCE SOURCE DRAIN GATE DRAIN GATE DRAIN DRAIN (FLANGE) GATE DRAIN (FLANGE (FLANGE) SOURCE Absolute Maximum Ratings Tc=25 , Unless Otherwise Specified IRF640, RF1S640, RF1S640SM UNITS Drain to Source Breakdown Voltage (Note 1).....V_{DS} 200 v Drain to Gate Voltage (R_{GS}=20k Ω) (Note 1).....V_{DGR} 200 V Continuous Drain Current.....ID 18 Α 11 А Tc=100I_D Pulsed Drain Current (Note 3).....IDM 72 А ±20 V Gate to Source Voltage.....V_{GS} W Maximum Power Dissipation.....PD 125 1.0 W/ Dissipation Derating Factor..... Single Pulse Avalanche Energy Rating (Note 4).....EAS 580 m.J Operating and Storage Temperature......TJ, TSTG -55 to 150 Maximum Temperature for Soldering 300 Leads at 0.063in (1.6mm) from Cases for 10s.....TL 260 Package Body for 10s, See TB334.....Tpkg

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

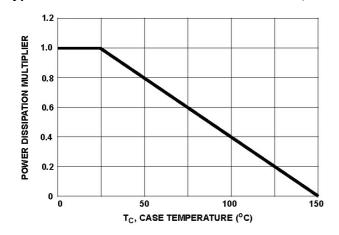
1. TJ=25 to 125 .

Electrical Specifications Tc=25 , U	nless Otherwi	se Specified				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown	BV _{DSS}	I_D =250µA, V _{GS} =0V, (Figure 10)	200	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =Rated BV _{DSS} , V _{GS} =0V	-	-	25	μA
		V_{DS} =0.8 x Rated BV _{DSS} , V_{GS} =0V, T _J =125	-	-	250	μA
On-State Drain Current (Note 1)	I _{D(ON)}	V _{DS} >I _{D(ON)} x r _{DS(ON)MAX} , V _{GS} =10V (Figure 7)	18	-	-	А
Gate to Source Leakage Current	I _{GSS}	V _{GS} =±20V	-	-	±100	nA
Drain to Source On Resistance(Note1)	I _{D(ON)}	I _D =10A, V _{GA} =10V (Figure8,9)	-	0.14	0.18	Ω
Forward Transconductance (Note1)	gfs	V _{DS} ≥10V, I _D =11A (Figure 12)	6.7	10	-	S
Turn-On Delay Time	t _{d(ON)}	V_{DD} =100V, I_{D} =18A, R_{GS} =9.1 Ω , R_{L} =5.4 Ω ,	-	13	21	ns
Rise Time	tr	MOSFET Switching Times are Essentially	-	50	77	ns
Turn-Off Delay Time	t _{d(OFF)}	Independent of Operating Temperature	-	46	68	ns
Fall Time	tf		-	35	54	ns
Total Gate Charge	Q _{g(TOT)}	V_{GS} =10V, I_{D} =18A, V_{DS} =0.8 x Rated BV_{DSS}	-	43	64	nC
(Gate to Source +Gate to Drain)		(Figure 14) Gate Charge is Essentially				
Gate to Source Charge	Qgs	Independent of Operating Temperature $I_{G(REF)}$ =1.5mA V_{DS} =25V, V_{GS} =0V, F=1MHz (Figure 11)		8	-	nC
Gate to Drain "Miller" Charge	Qgd			22	-	nC
Input Capacitance	C _{ISS}			1275	-	рF
Output Capacitance	C _{OSS}		-	400	-	pF
Reverse Transfer Capacitance	C _{RSS}		-	100	-	pF
Internal Drain Inductance	L _D	Measured From the Modified MOSFET contact Screw on Tab Symbol Showing the	-	3.5	-	nH
		to Center of Die Internal Devices				
		Measured From the Inductances	-	4.5	_	nH
		Drain Lead, 6mm		1.0		
		(0.25in) From				
		Package to Center of				
Internal Source Inductance	LS	Measured From the	-	7.5	-	nH
		Source Lead, 6mm				
		(0.25in) from Header				
		to Source Bonding				
		Pad				
Thermal Resistance Junction to Case	R _{OJC}		-	-	1	/W
Thermal Resistance Junction to	R _{ØJA}	Free Air Operation, IRF640	-	-	62	/W
Ambient	R _{OJA}	RF1S640SM Mounted on FR-4 Board with	-	-	62	/W
		Minimum Mounting Pad				

Source to Drain Diode Specifictions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET Symbol Showing the	-	-	18	A
Pulse Source to Drain Current (Note 2)	I _{SDM}	Junction Diode	-	-	72	A
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_J=25$, $I_{SD}=18A$, $V_{GS}=0V$, (Figure 13)	-	-	2.0	V
Reverse Recovery Time	trr	T _J =25 , I _{SD} =18A, dI _{SD} /dt=100A/µs	120	240	530	ns
Reverse Recovery Charge	Q _{rr}	T_J =25 , I_{SD} =18A, dI_{SD}/dt =100A/µs	1.3	2.8	5.6	μC

NOTES:


2. Pulse Test: Pulse width \leq 300µs, duty cycle \leq 2%.

3. Repetitive Rating: Pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).

4. V_{DD} =50V, starting T_J=25 , L=3.37mH, R_G=25 Ω , peak I_{AS}=18A.

Typical Performance Curves Unless Otherwise Specified

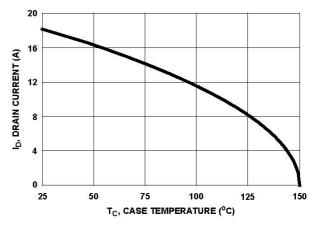


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

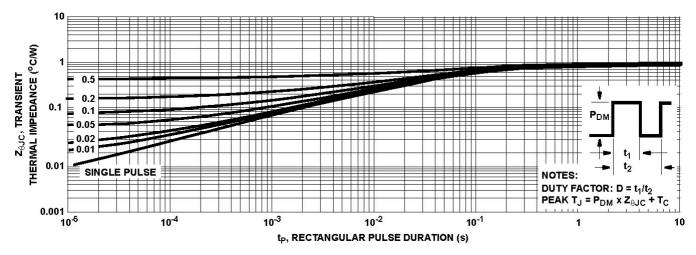
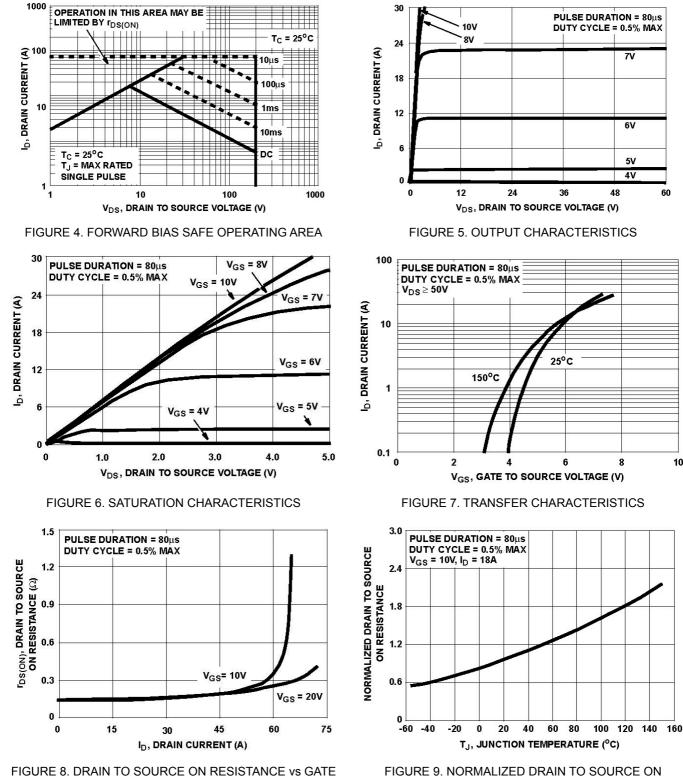
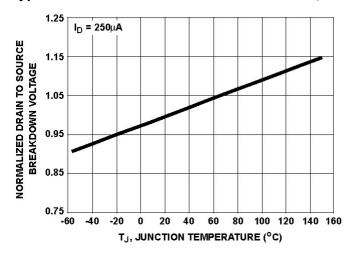



FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE

Typical Performance Curves Unless Otherwise Specified (Continued)



VOLTAGE AND DRAIN CURRENT

10

Typical Performance Curves Unless Otherwise Specified (Continued)

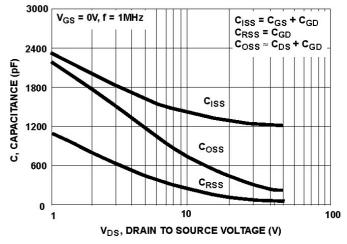


FIGURE10. NORMALIZED DRAIN TO SOURCE BREAKDOWN

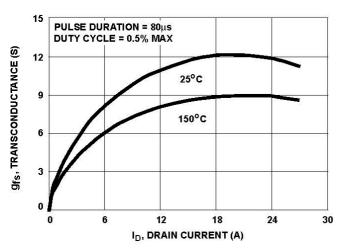


FIGURE 12. TRANSCONDUCTANCE VS DRAIN CURRENT

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

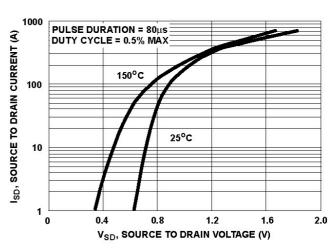


FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

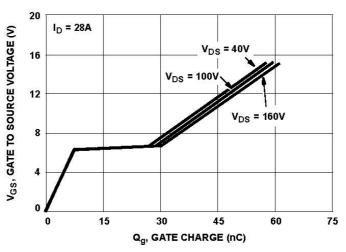


FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

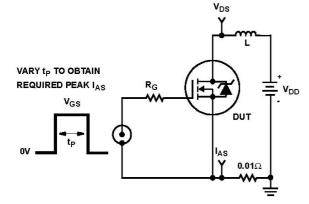


FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

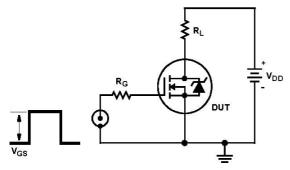


FIGURE 17. SWITCHING TIME TEST CIRCUIT

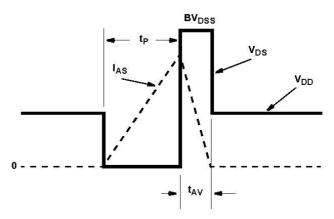


FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

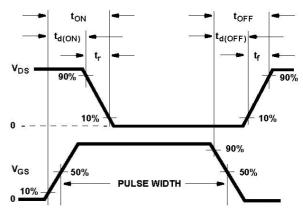


FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

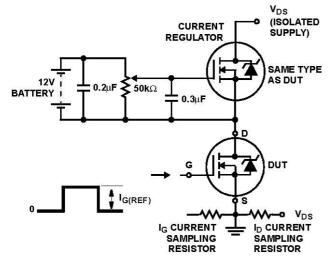
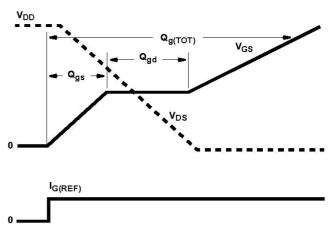



FIGURE 19. GATE CHARGE TEST CIRCUIT

